Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes.
نویسندگان
چکیده
The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.
منابع مشابه
Nuclear pores and interphase chromatin: high-resolution image analysis and freeze etching.
Computer-enhanced analysis of electron micrographs of thin-sectioned rat liver nuclei, combined with three-dimensional reconstruction of the same Feulgen-stained nuclei, points to a unique clustering of chromatin DNA fibres near the nuclear border. Computer-enhanced image analysis has been applied to electron micrographs of the envelopes of the same rat liver nuclei prepared by freeze etching a...
متن کاملCorrelative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.
Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscop...
متن کاملcut11(+): A gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe.
The "cut" mutants of Schizosaccharomyces pombe are defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11(+) suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin a...
متن کاملCorrelation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components
Nuclear pore complexes (NPCs) prepared from Xenopus laevis oocyte nuclear envelopes were studied in "intact" form (i.e., unexposed to detergent) and after detergent treatment by a combination of conventional transmission electron microscopy (CTEM) and quantitative scanning transmission electron microscopy (STEM). In correlation-averaged CTEM pictures of negatively stained intact NPCs and of dis...
متن کاملThe Ran GTPase cycle is required for yeast nuclear pore complex assembly
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 8 11 شماره
صفحات -
تاریخ انتشار 1997